взаимно однозначное отображение проективной плоскости (См. Проективная плоскость) или проективного пространства (См. Проективное пространство) в себя, при котором точки, лежащие на прямой, переходят в точки, также лежащие на прямой (поэтому П. п. иногда называется коллинеацией). П. п. проективной прямой называется взаимно однозначное отображение её в себя, при котором сохраняется Гармоническое расположение точек этой прямой. Простейшим и вместе с тем наиболее важным для приложений примером П. п. является Гомология — П. п., оставляющее на месте прямую и точку вне её. Примером П. п. пространства является перспектива, т. е. проектирование фигуры F, лежащей в плоскости П, из точки S в фигуру F', расположенную в плоскости П', любое П. п. получается конечной последовательностью перспектив. П. п. образуют группу (См. Группа), основным инвариантом которой является Двойное отношение четырёх точек прямой. Теории инвариантов групп П. п., оставляющих на месте некоторую фигуру, представляют собой метрические геометрии (см. Проективная метрика).
Основная теорема о П. п. проективной плоскости состоит в том, что каковы бы ни были четыре точки А, В, С, D плоскости П, из которых никакие три не лежат на одной прямой, и четыре точки A', B', C', D' той же плоскости, из которых никакие три также не лежат на одной прямой, существует и притом только одно П. п., которое точки А, В, С, D переводит соответственно в точки A', B', C', D'. Эта теорема применяется в номографии и аэрофотосъёмке. Аналогичная теорема имеет место и в проективном пространстве: там П. п. определяется пятью точками, из которых никакие четыре не лежат в одной плоскости. Эта теорема эквивалентна аксиоме Паппа.
В однородных координатах П. п. выражается однородным линейным преобразованием (См. Линейное преобразование), определитель матрицы которого не равен нулю. Рассматриваются также П. п. евклидовой плоскости или пространства; в декартовых координатах они выражаются дробно-линейными функциями (См. Дробно-линейная функция), причём свойство взаимной однозначности утрачивается.
Лит. см. при ст. Проективная геометрия.
Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.