Akademik

Прямоугольников формула
        простейшая формула для приближённого вычисления определённого интеграла, имеющая вид
        
        где h = (b a)/n, xk = ξ + (k — 1) h и a ≤ ξ ≤ a + h. Наиболее точной из всех П. ф. является формула средних ординат, в которой ξ = а + h/2; если )f " (x)) М на отрезке [а, b], то для этой формулы
        
        Остальные П. ф. в общем случае менее точны; поэтому, например, вместо формул, в которых ξ = а и ξ = а + h, предпочитают пользоваться их средним арифметическим (см. Трапеций формула), т.к. погрешность при этом будет не больше (b — a)3M/12n2. Если обе части П. ф. для ξ = а + h/2, ξ = а и ξ = а + h умножить соответственно на коэффициенты 2/3, 1/6, и 1/6, а затем сложить, то получится более точная формула приближённого интегрирования (см. Симпсона формула), погрешность которой не больше (b — a)5N/2880n 4, где N — максимум |f IV (x)| на отрезке [а, b].

Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.