1) в магнитоупорядоченных средах (магнетиках) волны нарушений «спинового порядка». В ферромагнетиках (См. Ферромагнетики), Антиферромагнетиках и Ферритах спины атомов и связанные с ними магнитные моменты в основном состоянии строго упорядочены. Из-за сильного обменного взаимодействия (См. Обменное взаимодействие) между атомами отклонение магнитного момента какого-либо атома от положения равновесия не локализуется, а в виде волны распространяется в среде. С. в. являются элементарным (простейшим) движением магнитных моментов в магнетиках. Существование С. в. было предсказано Ф. Блохом в 1930.
С. в., как всякая волна, характеризуется зависимостью частоты ω от волнового вектора k (законом дисперсии). В сложных магнетиках (кристаллах с несколькими магнитными подрешётками) могут существовать несколько типов С. в.; их закон дисперсии существенно зависит от магнитной структуры тела.
С. в. допускают наглядную классическую интерпретацию: рассмотрим цепочку из N атомов, расстояния между которыми а, в магнитном поле Н (см. рис.). Если волновой вектор С. в. k = 0, это означает, что все спины синфазно прецессируют вокруг направления поля Н. Частота этой однородной прецессии равна ларморовой частоте ω0. При k ≠ 0 спины совершают неоднородную прецессию: прецессии отдельных спинов (1, 2, 3 и т. д.) не находятся в одной фазе, сдвиг фаз между соседними атомами равен ka (см. рис.). Частота ω (k) неоднородной прецессии больше частоты однородной прецессии ω0. Зная силы взаимодействия между спинами, можно рассчитать зависимость ω(k).
В ферромагнетиках для длинных С. в. (ka 1) эта зависимость проста:
величина е >> ω0. Частота однородной прецессии ω0 определяется анизотропией (См. Анизотропия) кристалла и приложенным к нему магнитным полем Н: g — Магнитомеханическое отношение, β — константа анизотропии, М — намагниченность при Т = 0 К. Квантовомеханическое рассмотрение системы взаимодействующих спинов позволяет вычислить законы дисперсии С. в. для различных кристаллических решёток при произвольном соотношении между длиной С. в. и постоянной кристаллической решётки.
С. в. ставят в соответствие квазичастицу (См. Квазичастицы), называемую Магноном. При Т = 0 К в магнетиках нет магнонов, с ростом температуры они появляются и число магнонов растет — в ферромагнетиках приблизительно пропорционально T3/2, а в антиферромагнетиках ≈T3. Рост числа магнонов приводит к уменьшению магнитного порядка. Так, благодаря возрастанию числа С. в. с ростом температуры уменьшается намагниченность ферромагнетика, причём изменение намагниченности
С. в. проявляют себя в тепловых, высокочастотных и др. свойствах магнетиков. При неупругом рассеянии нейтронов магнетиками в последних возбуждаются С. в. Рассеяние нейтронов — один из наиболее результативных методов экспериментального определения законов дисперсии С. в. (см. Нейтронография).
2) С. в. в немагнитных металлах — колебания спиновой плотности электронов проводимости (См. Электрон проводимости), обусловленные обменным взаимодействием между ними. Существование С. в. в немагнитных металлах проявляется в некоторых особенностях электронного парамагнитного резонанса (См. Электронный парамагнитный резонанс) (ЭПР), в частности в селективной прозрачности металлических пластин для электромагнитных волн с частотами, близкими к частоте ЭПР.
Лит.: Ахиезер А. И., Барьяхтар В. Г., Пелетминский С. В., Спиновые волны, М., 1967.
М. И. Каганов.
Прецессия N векторов спинов в линейной цепочке атомов («моментальный снимок»).
Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.