Akademik

Формализация
        представление какой-либо содержательной области (рассуждений, доказательств, процедур классификации, поиска информации научных теорий) в виде формальной системы (См. Формальная система), или исчисления (См. Исчисление). Ф., осуществляемая на базе определённых абстракций, идеализаций и искусственных символических языков, используется прежде всего в математике (см. Математический формализм), а также в тех науках, в которых применение математического аппарата достигает достаточной для этой цели степени зрелости. Ф. предполагает усиление роли формальной логики (См. Формальная логика) как основания теоретических наук, поскольку в случае формализованных теорий уже нельзя удовлетворяться интуитивным убеждением, что та или иная аргументация согласуется с логическими правилами, усвоенными благодаря так или иначе приобретённой способности к правильному мышлению. Полностью могут быть формализованы лишь элементарные теории с простой логической структурой и небольшим запасом понятий (например, исчисление высказываний и узкое исчисление предикатов – в логике, элементарная геометрия – в математике). Если же теория сложна, она принципиально не может быть полностью формализована (см. Полнота, Метатеория).
         Ф. позволяет систематизировать, уточнить и методологически прояснить содержание теории, выяснить характер взаимосвязи между собой различных её положений, выявить и сформулировать ещё не решенные проблемы. Ф. как познавательный приём – в частности Ф. в узком «математическом» смысле – носит относительный характер: одна и та же теория может быть одновременно и средством Ф. (некоторой другой теории и области явлений), и предметом Ф. (в более «формальной» теории). Так, традиционная «формальная» логика является Ф. по отношению к совокупности отражённых в ней закономерностей человеческого мышления; по отношению же к своим (аксиоматическим) Ф. она выступает в качестве содержательной теории предмета формализации
        .
         Лит.: Тарский А., Введение в логику и методологию дедуктивных наук, пер. с англ., М., 1948; Клини С. К., Введение в метаматематику, пер. с англ., М., 1957, § 15; Чёрч А., Введение в математическую логику, пер. с англ., т. 1, М.. 1960, Введение.

Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.