подстановки, служащие для приведения интегралов вида
где R (x, y) — рациональная функция от х и у, к интегралам от рациональных функций (см. Интегральное исчисление). Предложены Л. Эйлером в 1768. Первая Э. п.
применима, если а>0; вторая Э. п.
применима, если с > 0; третья Э. п.
где λ — один из корней трёхчлена ax2 + bx + c, применима, если корни этого трёхчлена действительны. На практике Э. п. требуют громоздких преобразований и потому вместо них обычно пользуются теми или иными искусств. приёмами, упрощающими вычисление.
Аналогичные подстановки делаются в теории чисел при решении неопределённых уравнений 2-й степени в рациональных числах.
Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.