Akademik

Коагуляция
I Коагуля́ция (от лат. Coagulatio — свёртывание, сгущение)
        слипание частиц коллоидной системы при их столкновениях в процессе теплового (броуновского) движения, перемешивания или направленного перемещения во внешнем силовом поле. В результате К. образуются агрегаты — более крупные (вторичные) частицы, состоящие из скопления более мелких (первичных). Первичные частицы в таких скоплениях соединены силами межмолекулярного взаимодействия непосредственно или через прослойку окружающей (дисперсионной) среды. К. сопровождается прогрессирующим укрупнением частиц (увеличением размера и массы агрегатов) и уменьшением их числа в объёме дисперсионной среды — жидкости или газа.
         Различают быструю и медленную К. При быстрой К. почти каждое соударение частиц эффективно, т. е. приводит к их соединению; при медленной К. соединяется часть сталкивающихся частиц. В жидкой среде, например при К. золей (См. Золи), укрупнение частиц до известного предела (приблизительно до размера 10-4 см) не сопровождается их оседанием или всплыванием. Это скрытая К., при которой система сохраняет седиментационную устойчивость. Дальнейший рост частиц приводит к образованию сгустков или хлопьев (флокул), выпадающих в осадок (коагулят, коагель) или скапливающихся в виде сливок у поверхности; это явная К. В некоторых случаях при К. во всём объёме дисперсионной среды возникает рыхлая пространственная сетка (коагуляционная структура) и расслоения системы не происходит (см. Гели). Если коллоидные частицы — капельки жидкости или пузырьки газа, то К. может завершиться их слиянием, коалесценцией (См. Коалесценция).
         К. — самопроизвольный процесс, который, в соответствии с законами термодинамики, является следствием стремления системы перейти в состояние с более низкой свободной энергией. Однако такой переход затруднен, а иногда практически невозможен, если система агрегативно устойчива, т. е. способна противостоять укрупнению (агрегированию) частиц. Защитой от К. при этом может быть электрический заряд и (или) адсорбционно-сольватный слой на поверхности частиц, препятствующий их сближению (подробнее см. Коллоидные системы). Нарушить агрегативную устойчивость можно, например, повышением температуры (термокоагуляция), перемешиванием или встряхиванием, введением коагулирующих веществ (коагулянтов (См. Коагулянты)) и др. видами внешнего воздействия на систему. Минимальная концентрация введенного вещества, электролита или неэлектролита, вызывающая К. в системе с жидкой дисперсионной средой, называется порогом коагуляции. В полидисперсных системах, где частицы имеют разную величину, можно наблюдать ортокинетическую К. — налипание мелких частиц на более крупные при их оседании или всплывании. Слипание однородных частиц называется гомокоагуляцией, а разнородных — гетерокоагуляцией или адагуляцией. Гетерокоагуляция часто происходит при смешении дисперсных систем различного состава. К. может наступить без какого-либо внешнего воздействия на коллоидную систему (автокоагуляция) как результат физических или химических изменений, происходящих при её старении. Иногда К. обратима; в благоприятных условиях, особенно при введении поверхностно-активных веществ (См. Поверхностно-активные вещества), понижающих поверхностную межфазную энергию и облегчающих Диспергирование, возможен распад агрегатов на первичные частицы (Пептизация) и переход коагеля в золь.
         К. играет важную роль во многих технологических, биологических, атмосферных и геологических процессах. Так, при нагревании биополимеров (См. Биополимеры) (белков, нуклеиновых кислот) и при некоторых др. воздействиях на них, например изменении pH, наблюдается их К. Явления К. во многих биологических дисперсных системах (например, крови, лимфе) важны в связи с вопросами их агрегативной устойчивости. Очистка природных и сточных вод от высокодисперсных механических примесей, борьба с загрязнением воздушного пространства аэрозолями (См. Аэрозоли), выделение каучука из Латекса, получение сливочного масла и др. пищевых продуктов — характерные примеры использования К. в практических целях. Нежелательна К. при получении и хранении суспензий (См. Суспензии), эмульсий (См. Эмульсии), порошков и др. дисперсных систем промышленного или бытового назначения.
         Лит.: Наука о коллоидах, под ред. Г. Кройта, пер. с англ., т. 1, М., 1955; Воюцкий С. С., Курс коллоидной химии, М., 1964. См. также лит. при ст. Коллоидная химия.
         Л. А. Шиц.
II Коагуля́ция
        акустическая, процесс сближения и укрупнения взвешенных в газе или жидкости мелких твёрдых частиц, жидких капелек и газовых пузырьков под действием звуковых волн. При распространении звуковой волны возникают силы, под действием которых частицы сближаются, что способствует их слипанию. При коагуляции пузырьков газа в жидкости происходит полное слияние их с уничтожением разделявших их границ, так что в этом случае имеет место более глубокая стадия процесса — ультразвуковая Коалесценция. К. применяется для очистки воздуха от промышленных дымов, для осаждения туманов, для дегазации жидкостей, в частности расплавов металлов.
         Лит.: Бергман Л., Ультразвук и его применение в науке и технике, пер. с нем., М., 1956; Цетлин В. М., Акустическая коагуляция аэрозолей и её техническое применение, М., 1957.

Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.