частица вещества микроскопических размеров и очень малой массы (микрочастица), наименьшая часть химического элемента, являющаяся носителем его свойств. Каждому элементу соответствует определённый род А., обозначаемых символом элемента (например, А. водорода Н: А. железа Fe; А. ртути Hg; А. урана U).
А. могут существовать как в свободном состоянии, в газе, так и в связанном. Соединяясь химически с А. того же элемента или А. других элементов, они образуют более сложные микрочастицы — молекулы (См. Молекула), всё огромное многообразие химических соединений обусловлено различными сочетаниями А. в молекулах. Связываясь друг с другом непосредственно .или в составе молекул, А. образуют жидкости и твёрдые тела.
Свойства макроскопических тел — газообразных, жидких и твёрдых — и свойства отдельных молекул зависят от свойств входящих в их состав А. Все свойства А., физические и химические, определяются его строением как системы, состоящей из ядра и электронов, и подчиняются характерным для микроскопических явлений квантовым законам. Ниже излагаются современные представления о строении и свойствах А. (историю развития учения об А. см. в ст. Атомная физика).
Общая характеристика строения атома. А. состоит из тяжёлого ядра, обладающего положительным электрическим зарядом, и окружающих его лёгких электронов с отрицательными электрическими зарядами, образующих электронные оболочки А. Размеры А. в целом определяются размерами его электронной оболочки и велики по сравнению с размерами ядра А.
Характерные порядки размеров:
--------------------------------------------------------------------------------------------------------------------
| | Линейные размеры | Площадь* | Объем |
|------------------------------------------------------------------------------------------------------------------|
| Атом | 10—8 см | 10—16 см2 | 10—24 см3 |
|------------------------------------------------------------------------------------------------------------------|
| Ядро | 10—12 см | 10—24 см2 | 10—36 см3 |
|------------------------------------------------------------------------------------------------------------------|
| Отношение | 104 | 108 | 1012 |
--------------------------------------------------------------------------------------------------------------------
* Поперечное сечение.
Электронные оболочки А. не имеют строго определённой границы; значения размеров А. в большей или меньшей степени зависят от способов их определения и весьма разнообразны (см. Атомные радиусы).
Заряд ядра — основная характеристика А., обусловливающая его принадлежность определённому элементу. Заряд ядра всегда является целым кратным элементарного положительного электрич. заряда е, равного по абсолютному значению заряду электрона —е. Заряд ядра равен +Ze, где Z — порядковый номер (атомный номер). Z = 1, 2, 3, 4,... для А. последовательных элементов в периодической системе элементов Менделеева, т. е. для атомов Н, Не, Li, Be, ...В нейтральном А. ядро с зарядом +Ze удерживает Z электронов с общим зарядом —Ze и полный заряд А. равен нулю; в положительном ионе —А., потерявшем k электронов (ионизованном А.), остаётся Z—k электронов (k = 1, 2, 3, ... — кратность ионизации) и его заряд равен +ke, в отрицательном ионе —А., присоединившем k электронов,— содержится Z + k электронов, и его заряд равен —ke. Для положительного иона максимальное значение k = Z (такой ион потерял все свои электроны и состоит из «голого» ядра); для отрицательного свободного иона k = 1, для связанных А. возможно образование отрицательных ионов с k > 1 (в растворах, комплексных соединениях (См. Комплексные соединения) и ионных кристаллах (См. Ионные кристаллы)). Говоря об А. определённого элемента, подразумевают как нейтральные А., так и ионы этого элемента. Но иногда под А. понимают нейтральный А., в противоположность ионам. Положительные и отрицательные ионы при написании отличают от нейтрального А. индексом k+ и k—, например О обозначает нейтральный А. кислорода (Z = 8), О+, О2+(или O++), O3+,..., O8+ — его положительные ионы,О—, O2— (или О— — его отрицательные ионы. Совокупность нейтрального А. и ионов других элементов с тем же числом электронов образует изоэлектронный ряд. Простейший такой ряд начинается с А. водорода: H, He+, Li2+, Be3+, ...; члены этого ряда состоят из ядра и одного электрона.
Порядок значений зарядов ядер различных А. был определён английским физиком Э. Резерфордом в его первоначальных опытах по рассеянию альфа-частиц (1911). Значения Z были надёжно установлены английским физиком Г. Мозли (1913—14) на основе изучения рентгеновских спектров последовательных элементов в периодической системе. Кратность заряда ядра А. элементарному заряду е получила объяснение, исходя из представлений о строении ядра: Z равно числу Протонов в ядре, протон имеет заряд +е, и полный заряд ядра равен сумме зарядов всех Z протонов, т. е. +Ze.
Масса атома возрастает с увеличением Z. Масса ядра А. приближённо пропорциональна массовому числу (См. Массовое число) А — общему числу протонов и нейтронов в ядре. Масса электрона (0,91 10—27 г) значительно меньше (примерно в 1840 раз) массы протона или нейтрона (1,67 10—24 г), и поэтому масса А. в целом определяется в основном массой его ядра.
А. данного элемента могут отличаться массой ядра (число протонов Z постоянно, число нейтронов А—Z может меняться); такие разновидности А. одного и того же элемента называются изотопами (См. Изотопы). Различие массы ядра почти не сказывается на строении их электронных оболочек, зависящем от заряда ядра Z. Химические и большинство физических свойств (оптические, электрические, магнитные), определяемые строением электронных оболочек, одинаковы или очень близки для всех изотопов данною элемента. Наибольшие отличия в свойствах (изотонические эффекты) получаются для изотопов водорода (Z = 1) из-за большой разницы в массах обычного лёгкого А. водорода (А = 1), А. дейтерия (А = 2) и А. трития (А = 3).
Масса А. приближённо равна массовому числу А и изменяется от 1,67 10—24 г для самого лёгкого А. водорода (основного изотопа: Z = 1, A = 1) до примерно 4 10—22 г для самых тяжёлых А. трансурановых элементов (Z = 100, А = 250).
Наиболее точные значения масс А. могут быть определены методами масс-спектроскопии (См. Масс-спектроскопия). Масса А. не равна в точности сумме массы ядра и масс электронов, а несколько меньше — на Дефект массы ΔМ = W/c2', где W — энергия образования А. из ядра и электронов, а с — скорость света. Эта поправка — порядка массы одного электрона mе для тяжёлых А., а для лёгких А. пренебрежимо мала (порядка 10—4 массы электрона).
Энергия атома и её квантование. Благодаря малым размерам и большой массе ядра его можно приближённо считать точечным и покоящимся в центре масс А. (общий центр масс ядра и электронов находится вблизи ядра, а скорость движения ядра относительно центра масс А. мала по сравнению со скоростями движения электронов). Соответственно А. можно рассматривать как систему, в которой N электронов с зарядами —е движутся вокруг неподвижного притягивающего центра. Движение электронов в А. происходит в ограниченном объёме — оно является связанным. Полная внутренняя энергия А. Е равна сумме кинетических энергий всех электронов Т и потенциальной энергии U — энергии притяжения их ядром и отталкивания их друг от друга (электростатической энергии взаимодействия электрических зарядов ядра и электронов, согласно закону Кулона).
В простейшем случае А. водорода один электрон с зарядом —е движется вокруг неподвижного центра с зарядом +е. В этом случае, согласно классической механике, кинетическая энергия
Т =1/2mv =p2/2m (1)
где m — масса, v — скорость, p = mv — количество движения (импульс) электрона. Потенциальная энергия (сводящаяся к энергии притяжения электрона ядром)
U = U(r) = —e2/r (2)
и зависит только от расстояния r электрона от ядра. Графически функция U(r) изображается кривой (рис. 1, а), неограниченно убывающей при уменьшении r, т. е. при приближении электрона к ядру. Значение U (r) на бесконечности принято за нуль. При отрицательных значениях полной энергии Е = Т + U 0 движение электрона является связанным: оно ограничено в пространстве значениями r = rmax, при которых Т = 0, Е = U(rmax). При положительных значениях полной энергии E = T + U > 0 движение электрона является свободным — он может уйти на бесконечность с энергией Е = Т = 1/2 mv2, что соответствует ионизованному А. водорода Н+. Нейтральный А. водорода Н представляет, т. о., систему, состоящую из ядра и электрона в связанном состоянии с энергией E 0.
Полная внутренняя энергия А. Е является его основной характеристикой как квантовой системы — системы, подчиняющейся квантовым законам (см. Квантовая механика). Как показывает огромный экспериментальный материал (см., например, Франка—Герца опыт (См. Франка - Герца опыт)), А. может длительно находиться лишь в состояниях с определённой энергией — стационарных (неизменных во времени) состояниях.
Существование стационарных состояний — один из основных законов физики микроскопических явлений — квантовой физики. Внутренняя энергия квантовой системы, состоящей из связанных микрочастиц (такой системой и является А.), может принимать одно из дискретного (прерывного) ряда значений
E1, E2, E3, ...(E1 E2 E3 ...). (3)
Каждому из этих «дозволенных» значений энергии соответствует одно или несколько стационарных квантовых состояний движения. Промежуточными значениями энергии (например, лежащими между E1 и E2, E2 и E3 и т.д.) система обладать не может, о такой системе говорят, что её энергия квантована, а нахождение возможных значений энергии называется квантованием энергии. Любое изменение энергии Е связано с квантовым (скачкообразным) переходом системы из одного стационарного квантового состояния в другое (см. ниже).
Графически возможные дискретные значения энергии (3) А. можно изобразить, по аналогии с потенциальной энергией тела, поднятого на различные высоты (на различные уровни), в виде схемы уровней энергии (См. Уровни энергии), где каждому значению энергии соответствует прямая, проведённая на высоте Ei (i = 1, 2, 3, ...); такая схема приведена на рис. 1, б для А. водорода (на рис. 1, а при E 0 оказываются, т. о., возможными лишь определённые ступеньки, соединённые горизонтальным пунктиром с уровнями схемы на рис. 1, б). Самый нижний уровень Ei, соответствующий наименьшей возможной энергии системы, называется основным, а все остальные (Ei > Ei, г = 2, 3, 4, ...) — возбуждёнными, т. к. для перехода на них (перехода в соответствующие стационарные возбуждённые состояния из стационарного основного состояния) необходимо возбудить систему — сообщить ей извне энергию Ei—E1.
Квантование энергии А. является следствием волновых свойств электронов. Нельзя считать, что электрон в А. движется как материальная точка по определённой траектории, согласно законам классической механики. Эти законы справедливы лишь для частиц большой массы (макрочастиц), а для электрона, как микрочастицы, необходимо учитывать, наряду с его корпускулярными свойствами (свойствами частицы), и его волновые свойства. Согласно квантовой механике, движению микрочастицы массы m со скоростью v соответствует длина волны λ = h/mv, где h — Планка постоянная. Для электрона в А. λ Атом 10—8 см, т. е. порядка линейных размеров А., и учёт волновых свойств электрона в А. является необходимым. Связанное движение электрона в А. схоже со стоячей волной (См. Стоячие волны), и его следует рассматривать не как движение материальной точки по траектории, а как сложный колебательный процесс. Для стоячей волны в ограниченном объёме возможны лишь определённые значения длины волны λ (и, следовательно, частоты колебаний v). Так как, согласно квантовой механике, v = E/h, отсюда следует, что система, состоящая, подобно А., из связанных микрочастиц, может иметь лишь определённые значения энергии, т. е. энергия квантуется и получается дискретная последовательность уровней энергии — дискретный энергетический спектр. Для А. водорода такая дискретная последовательность получается при Е 0 (см. рис. 1). Свободное, т. е. не ограниченное в пространстве, поступательное движение микрочастицы, например движение электрона, оторванного от А. (в случае А. водорода — электрона с энергией Е > 0), сходно с распространением бегущей волны в неограниченном объёме, для которой возможны любые значения λ (и v). Энергия такой свободной микрочастицы может принимать любые значения, т. е. не квантуется, и получается непрерывная последовательность уровней энергии — непрерывный энергетический спектр. Для А. водорода такая непрерывная последовательность, соответствующая ионизованному А., получается при E > 0. Значение Е ∞ = 0 соответствует границе ионизации, а разность Е ∞ — Е1 = Еион представляет энергию ионизации: для А. водорода она равна 13,6 эв.
Распределение электронной плотности. Состояние электрона в А. можно характеризовать распределением в пространстве его электрического заряда с некоторой плотностью — распределением электронной плотности. При этом электроны рассматриваются наглядным образом, как «размазанные» в пространстве и образующие «электронное облако». Такая модель правильнее характеризует электроны в А., чем модель точечного электрона, движущегося, согласно теории Бора (см. Атомная физика), по строго определённым орбитам. Вместе с тем боровским орбитам можно сопоставить определённые распределения электронной плотности. Для основного уровня энергии Е1 электронная плотность концентрируется вблизи ядра; для возбуждённых уровней энергии E2, E3, E4,... она распределяется на всё больших средних расстояниях от ядра (что соответствует возрастанию размера орбит в теории Бора). В сложном А. эти электроны группируются в оболочки, окружающие ядро на различных расстояниях и характеризующиеся определёнными распределениями электронной плотности. Прочность связи электронов в более внешних оболочках меньше, чем во внутренних, и слабее всего электроны связаны в самой внешней оболочке, обладающей наибольшими размерами, которые и определяют размеры А. в целом. При ионизации А. теряет внешние электроны; размеры положительных ионов тем меньше размеров нейтрального А., чем выше кратность иона. Наоборот, размеры отрицательных ионов больше размеров нейтрального А.
Учёт спина электрона и спина ядра. В теории А. весьма существен учёт Спина электрона — его собственного (спинового) момента количества движения, с наглядной точки зрения соответствующего вращению электрона вокруг собственной оси (если электрон рассматривать как частицу малых размеров). Со спином электрона связан его Магнитный момент. Поэтому в А. необходимо учитывать, наряду с электростатическими взаимодействиями (см. выше), и магнитные взаимодействия, определяемые спиновым магнитным моментом, а также орбитальным магнитным моментом, связанным с движением электрона вокруг ядра; магнитные взаимодействия малы по сравнению с электростатическими. Наиболее существенное влияние спина проявляется в сложных А.: от спина электронов зависит заполнение электронных оболочек А. определённым числом электронов (см. ниже).
Ядро в А. также может обладать собственным механическим моментом — ядерным спином, с которым связан небольшой ядерный магнитный момент (в сотни и тысячи раз меньший электронного магнитного момента), а в некоторых случаях и т. н. квадрупольный электрический момент (см. Моменты атомных ядер). Это приводит к дополнительным очень малым взаимодействиям ядра и электронов, обусловливающим дополнительное расщепление уровней энергии А. — т. н. сверхтонкую структуру (См. Сверхтонкая структура) (малую по сравнению с тонкой структурой).
Квантовые состояния атома водорода. Важнейшую роль в квантовой теории А. играет теория простейшего одноэлектронного А., состоящего из ядра с зарядом +Ze и электрона с зарядом —е, — теория А. водорода Н и водородоподобных ионов Не+, Li2+, Ве3+,... (изоэлектронного ряда, см. выше), называется обычно теорией А. водорода. Методами квантовой механики можно получить точную и полную характеристику состояний электрона в одноэлектронном А. Задача о сложных (многоэлектронных) атомах решается лишь приближённо; при этом исходят из результатов решения задачи об одноэлектронном А.
Уровни энергии А. водорода и водородоподобных ионов. Энергия одноэлектронного А. (без учёта спина электрона) равна
целое число n = 1, 2, 3, ... определяет возможные дискретные значения энергии — уровни энергии; его называют главным квантовым числом. R — Ридберга постоянная, равная 13,6 эв. Уровни энергии А. водорода на схеме рис. 1, б построены для Z = 1 согласно формуле (4); они сгущаются (сходятся) к границе ионизации Е∞ = 0, соответствующей n = ∞ (уровни энергии с n > 5 на схеме не показаны). Для водородоподобных ионов изменяется (в Z2 раз) лишь масштаб энергий. Энергия ионизации водородоподобного А. (энергия связи электрона в таком А.) равна (в эв)
Еион = E∞ — E1 = RZ2 = 13,6Z2 (5)
что даёт для Н, Не+, Li2+, ... значения 13,6 эв, 54,4 эв, 122,4 эв, ...
Основная формула (4) соответствует выражению U (r) = —Ze2/r для потенциальной энергии электрона, притягиваемого ядром с зарядом +Ze [см. (2) и рис. 1, а для случая Z = 1]. Эта формула была впервые выведена Н. Бором в его теории А. (1913) путём рассмотрения движения электрона вокруг ядра по круговой орбите радиуса r. Уровням энергии (4) соответствуют орбиты радиуса
anZ = a0n2/Z (6)
где постоянная a0 = 0,529 10—8см = 0,529 Å — радиус первой круговой орбиты А. водорода, соответствующей его основному уровню (этим боровским радиусом часто пользуются в качестве удобной единицы для измерений длин в атомной физике). Радиус орбит пропорционален квадрату главного квантового числа n2 и обратно пропорционален Z; для водородоподобных ионов масштаб линейных размеров уменьшается в Z раз по сравнению с А. водорода.
Характеристика квантовых состояний атома водорода. Согласно квантовой механике, состояние А. водорода полностью определяется дискретными значениями четырёх физических величин: энергии Е, орбитального момента Ml, (момента количества движения электрона относительно ядра); проекции Mlz орбитального момента на направление z (выбранное произвольно в пространстве); проекции Msz спинового момента (собственного момента количества движения электрона Ms). Возможные значения этих физических величин, в свою очередь, определяются соответствующими квантовыми числами:
1) Е — по закону (4) — главным квантовым числом n =1, 2, 3, ...;
2) Мl — по закону Ml2 = (h2/4π2)l(l + 1) [при l " 1, Ml2 = (h2/4π2)l2 — орбитальным (или азимутальным) квантовым числом l = 0,1, 2, ..., n—1;
3) Mlz — по закону Mlz = (h/2π)mlz — магнитным орбитальным квантовым числом ml = l, l—1, ..., —l;
4) Msz — по закону Msz = (h/2π)ms — магнитным спиновым квантовым числом ms = 1/2, —1/2.
Значения квантовых чисел n, l, ml, ms и характеризуют состояние электрона в А. водорода. Энергия А. водорода зависит только от n, и уровню энергии с заданным n соответствует ряд состояний, отличающихся значениями l, ml и ms. Состояния с заданными значениями n и l принято обозначать как 1s, 2s, 2p, 3s, ..., где цифры указывают значение n, а буквы s, р, d, f (дальше по латинскому алфавиту) — соответственно значения l = 0, 1, 2, 3, ... При заданных n и l число различных состояний равно 2(2l + 1) — числу комбинаций значений ml и ms (первое принимает 2l + 1 значение, второе — 2 значения). Общее число различных состояний с заданными n и l при учёте, что l может принимать значения от 0 до n—1, получается равным
Т. о., каждому уровню энергии А. водорода соответствует 2, 8, 18, ..., 2n2 (при n = 1, 2, 3, ...) различных стационарных квантовых состояний (рис. 2). Если уровню энергии соответствует лишь одно квантовое состояние, то его называют невырожденным, если два или более — вырожденным (см. Вырождение), а число таких состояний g называются степенью или кратностью вырождения (для невырожденных уровней энергии g = 1). Уровни энергии А. водорода являются вырожденными, а их степень вырождения gn = 2n2.
Для различных состояний А. водорода получается и различное распределение электронной плотности. Оно зависит от квантовых чисел n, l и /mi/. При этом электронная плотность для s-cocтояний (l = 0) отлична от нуля в центре, т. е. в месте нахождения ядра, и не зависит от направления (сферически симметрична), а для остальных состояний (l > 0) она равна нулю в центре и зависит от направления. Распределение электронной плотности для состояний А. водорода с n = 1, 2 и 3 показано на рис. 3 (оно получено фотографированием специальных моделей); размеры «электронного облака» растут примерно пропорционально n2(масштаб на рис. 3 уменьшается при переходе от n = 1 к n = 2 и от n = 2 к n = 3), что соответствует увеличению радиуса орбит по формуле (6) в теории Бора.
Квантовые состояния электрона в водородоподобных ионах характеризуются теми же четырьмя квантовыми числами n, l, ml и ms, что и в А. водорода. Сохраняется и распределение электронной плотности, только она увеличивается в Z раз и на рис. 3 масштабы нужно уменьшить также в Z раз. Соответственно уменьшаются и размеры орбит.
Действие внешних полей на уровни энергии атома водорода. Во внешнем электрическом и магнитном полях А. как электрическая система приобретает дополнительную энергию. Электрическое поле поляризует А. — смещает электронное облако относительно ядра, а магнитное поле ориентирует определённым образом магнитный момент А., связанный с движением электрона вокруг ядра (с орбитальным моментом Ml) и его спином. Различным состояниям А. водорода с той же энергией Еn во внешнем поле соответствует различная дополнительная энергия ΔE и вырожденный уровень энергии Еn расщепляется на ряд подуровней (рис. 4). Как расщепление в электрическом поле — Штарка явление (См. Штарка эффект), так и расщепление в магнитном поле — Зеемана явление, для уровней энергии А. водорода пропорциональны напряжённости полей.
К расщеплению уровней энергии приводят и малые магнитные взаимодействия внутри А. Для А. водорода и водородоподобных ионов имеет место спин-орбитальное взаимодействие — взаимодействие спинового и орбитального моментов электрона, не учитываемое при выводе основной формулы (4); оно обусловливает т.н. тонкую структуру уровней энергии — расщепление возбуждённых уровней Еn (при n > 1) на подуровни. Наиболее точные исследования тонкой структуры методами радиоспектроскопии показали наличие т. н. сдвига уровней, объясняемого в квантовой электродинамике.
Для всех уровней энергии А. водорода наблюдается и сверхтонкая структура, обусловленная очень малыми магнитными взаимодействиями ядерного спина с электронными моментами. Уровень E1 расщепляется на 2 подуровня с расстоянием между ними примерно 5 10—6 эв.
Электронные оболочки сложных атомов. Теория сложных А., содержащих 2 или более электронов, принципиально отличается от теории А. водорода, т. к. в сложном А. имеются взаимодействующие друг с другом одинаковые частицы — электроны. Взаимное отталкивание электронов в многоэлектронном А. существенно уменьшает прочность их связи с ядром. Например, энергия отрыва единственного электрона в ионе гелия (Не+) равна 54,4 эв, в нейтральном же атоме гелия в результате отталкивания электронов энергия отрыва одного из них уменьшается до 24,6 эв. Для внешних электронов более тяжёлых А. уменьшение прочности их связи из-за отталкивания внутренними электронами ещё более значительно. Чрезвычайно важную роль в сложных А. играют свойства электронов как одинаковых микрочастиц (см. Тождественности принцип), обладающих спином s = 1/2, для которых справедлив Паули принцип. Согласно этому принципу, в системе электронов не может быть более одного электрона в каждом квантовом состоянии, что для сложного А. приводит к образованию электронных оболочек, заполняющихся строго определёнными числами электронов.
Учитывая неразличимость взаимодействующих между собой электронов, имеет смысл говорить только о квантовых состояниях А. в целом. Однако приближённо можно рассматривать квантовые состояния отдельных электронов и характеризовать каждый из них совокупностью четырёх квантовых чисел n, l, ml и ms, аналогично электрону в А. водорода. При этом энергия электрона оказывается зависящей не только от n, как в А. водорода, но и от l; от ml; и ms она по-прежнему не зависит. Электроны с данными n и l в сложном А. имеют одинаковую энергию и образуют определённую электронную оболочку; их называют эквивалентными электронами. Такие электроны и образованные ими оболочки обозначают, как и квантовые состояния и уровни энергии с заданными n и l, символами ns, nр, nd, nf, ... (для l = 0, 1, 2, 3 ....) и говорят о 2р-электронах, 3s-oболочках и т. п.
Заполнение электронных оболочек и слоёв. В силу принципа Паули любые 2 электрона в А. должны находиться в различных квантовых состояниях и, следовательно, отличаться хотя бы одним из четырёх квантовых чисел n, l, ml и ms. Для эквивалентных электронов (n и l одинаковы) должны быть различны пары значений mi и ms. Число таких пар равно числу различных квантовых состояний электрона с заданными n иl, т. е. степени вырождения его уровня энергии. Это число gl = 2 (2l + 1) = 2, 6, 10, 14, ... и определяет число электронов, полностью заполняющих данную оболочку. Т. о., s-, р-, d-, f-, ... оболочки заполняются 2, 6, 10, 14, ... электронами, независимо от значения n. Электроны с данным n образуют слой, состоящий из оболочек с l = 0, 1, 2, ..., n—1 и заполняемый 2n2 электронами, т. н. К-, L-, М-, N-, ...слой. При полном заполнении имеем:
------------------------------------------------------------
| n | 1 | 2 | 3 | 4 |
|----------------------------------------------------------|
| Слои | К- | L- | M- | N- |
| | слой | слой | слой | слой |
|----------------------------------------------------------|
| l | 0 | 0 1 | 0 1 | 0 1 |
| | | | 2 | 2 3 |
|----------------------------------------------------------|
| | | | 3s | 4s |
| Оболочки | 1s | 2s | 3p | 4p |
| | | 2p | 3d | 4d |
| | | | | 4f |
|----------------------------------------------------------|
| Число | | | | |
| электронов | 2 | |
| |