Akademik

Капиллярные явления
        физические явления, обусловленные действием поверхностного натяжения на границе раздела несмешивающихся сред. К К. я. относят обычно явления в жидких средах, вызванные искривлением их поверхности, граничащей с др. жидкостью, газом или собственным паром. Искривление поверхности ведёт к появлению в жидкости дополнительного капиллярного давления Δp, величина которого связана со средней кривизной r поверхности уравнением Лапласа: Δp = p1 — p2. =12/r, где (σ12Поверхностное натяжение на границе двух сред; p1 и p2 — давления в жидкости 1 и контактирующей с ней среде (фазе (См. Фаза)) 2. В случае вогнутой поверхности жидкости (r 0) давление в ней понижено по сравнению с давлением в соседней фазе: p1 p2 и Δp 0. Для выпуклых поверхностей (r > 0) знак Δp меняется на обратный. Капиллярное давление создаётся силами поверхностного натяжения, действующими по касательной к поверхности раздела. Искривление поверхности раздела ведёт к появлению составляющей, направленной внутрь объёма одной из контактирующих фаз. Для плоской поверхности раздела (r = ∞) такая составляющая отсутствует и Δp = 0.
         К. я. охватывают различные случаи равновесия и движения поверхности жидкости под действием межмолекулярных сил и внешних сил (в первую очередь силы тяжести).
         В простейшем случае когда внешние силы отсутствуют или скомпенсированы, поверхность жидкости всегда искривлена. Так, в условиях невесомости (См. Невесомость) ограниченный объём жидкости, не соприкасающейся с др. телами, принимает под действием поверхностного натяжения форму шара. Эта форма отвечает устойчивому равновесию жидкости, поскольку шар обладает минимальной поверхностью при данном объёме, и, следовательно, поверхностная энергия жидкости в этом случае минимальна.
         Форму шара жидкость принимает и в том случае, если она находится в другой, равной по плотности жидкости (действие силы тяжести компенсируется архимедовой выталкивающей силой, см. Архимеда закон). При нескомпенсированной силе тяжести картина существенно меняется Маловязкая жидкость (например, вода), взятая в достаточном количестве, принимает форму сосуда, в который она налита. Её свободная поверхность оказывается практически плоской, т.к. силы земного притяжения преодолевают действие поверхностного натяжения, стремящегося искривить и сократить поверхность жидкости. Однако по мере уменьшения массы жидкости роль поверхностного натяжения снова становится определяющей: при дроблении жидкости в среде газа или газа в жидкости образуются мелкие капли или пузырьки практически сферической формы (см. Капля).
         Свойства систем, состоящих из многих мелких капель или пузырьков (эмульсии, жидкие аэрозоли, пены), и условия их образования во многом определяются кривизной поверхности частиц, т. е. К. я. Не меньшую роль К. я. играют и при образовании новой фазы: капелек жидкости при конденсации (См. Конденсация) паров, пузырьков пара при кипении (См. Кипение) жидкостей, зародышей твёрдой фазы при кристаллизации (См. Кристаллизация).
         При контакте жидкости с твёрдыми телами на форму её поверхности существенно влияют явления смачивания (См. Смачивание), обусловленные взаимодействием молекул жидкости и твёрдого тела. На рис. 1 показан профиль поверхности жидкости, смачивающей стенки сосуда. Смачивание означает, что жидкость сильнее взаимодействует с поверхностью твёрдого тела (капилляра, сосуда), чем находящийся над ней газ. Силы притяжения, действующие между молекулами твёрдого тела и жидкости, заставляют её подниматься по стенке сосуда, что приводит к искривлению примыкающего к стенке участка поверхности. Это создаёт отрицательное (капиллярное) давление, которое в каждой точке искривленной поверхности в точности уравновешивает давление, вызванное подъёмом уровня жидкости. Гидростатическое давление в объёме жидкости при этом изменений не претерпевает.
         Если сближать плоские стенки сосуда таким образом, чтобы зоны искривления начали перекрываться, то образуется вогнутый Мениск полностью искривленная поверхность. В жидкости под мениском капиллярное давление отрицательно, под его действием жидкость всасывается в щель до тех пор, пока вес столба жидкости (высотой h) не уравновесит действующее капиллярное давление Δp. В состоянии равновесия
         (ρ1ρ2) gh = Δp =12/r,
         где ρ1 и ρ2 — плотность жидкости 1 и газа 2; g — ускорение свободного падения. Это выражение, известное как формула Д. Жюрена (J. Jurin, 1684—1750), определяет высоту h капиллярного поднятия жидкости, полностью смачивающей стенки капилляра. Жидкость, не смачивающая поверхность, образует выпуклый мениск, что вызывает сё опускание в капилляре ниже уровня свободной поверхности (h 0).
         Капиллярное впитывание играет существенную роль в водоснабжении растений, передвижении влаги в почвах и др. пористых телах. Капиллярная пропитка различных материалов широко применяется в процессах химической технологии.
         Искривление свободной поверхности жидкости под действием внешних сил обусловливает существование т. н. капиллярных волн («ряби» на поверхности жидкости). К. я. при движении жидких поверхностей раздела рассматривает физико-химическая Гидродинамика.
         Движение жидкости в капиллярах может быть вызвано разностью капиллярных давлений, возникающей в результате различной кривизны поверхности жидкости. Поток жидкости направлен в сторону меньшего давления: для смачивающих жидкостей — к мениску с меньшим радиусом кривизны (рис. 2, а).
         Пониженное, в соответствии с Кельвина уравнением, давление пара над смачивающими менисками является причиной капиллярной конденсации (См. Капиллярная конденсация) жидкостей в тонких порах.
         Отрицательное капиллярное давление оказывает стягивающее действие на ограничивающие жидкость стенки (рис. 2, б). Это может приводить к значительной объёмной деформации высокодисперсных систем и пористых тел — капиллярной контракции. Так, например, происходящий при высушивании рост капиллярного давления приводит к значительной усадке материалов.
         Многие свойства дисперсных систем (проницаемость, прочность, поглощение жидкости) в значительной мере обусловлены К. я., т.к. в тонких порах этих тел реализуются высокие капиллярные давления.
         К. я. впервые были открыты и исследованы Леонардо да Винчи (15 в.), затем Б. Паскалем (17 в.) и Д. Жюреном (18 в.) в опытах с капиллярными трубками. Теория К. я. развита в работах П. Лапласа (1806), Т. Юнга (1805), С. Пуассона (1831), Дж. Гиббса (1875) и И. С. Громеки (1879,1886).
         Лит.: Адам Н. К., Физика и химия поверхностей, пер. с англ., М., 1947; Громека И. О., Собр. соч., М., 1952.
         Н. В. Чураев.
        Рис. 1. Капиллярное поднятие жидкости, смачивающей стенки (вода в стеклянном сосуде и капилляре).
        Рис. 1. Капиллярное поднятие жидкости, смачивающей стенки (вода в стеклянном сосуде и капилляре).
        
        Рис. 2. а — перемещение жидкости в капилляре под действием разности капиллярных давлений (r1 > r2); б — стягивающее действие капиллярного давления.

Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.