Akademik

БИНАРНОЕ ОТНОШЕНИЕ

двуместный предикат на заданном множестве. Под Б. о. иногда понимают подмножество множества упорядоченных пар (а, 6) элементов заданного множества А. Б. о.- частный случай отношения. Пусть . Если , то говорят, что элемент "находится в бинарном отношении R к элементу b. Вместо пишут также .

Пустое подмножество в и само множество наз., соответственно, нуль-отношением и универсальным отношением в множестве А. Диагональ множества , т. е. множество есть отношение равенст-в а, или единичное бинарное отношение в А.

Пусть - Б. о. в множестве А. Наряду с теоретико-множественными операциями объединения пересечения и дополнения для Б. о. рассматривают также операцию обращения:


и операцию умножения:


Б. о. наз. обратным для R. Умножение Б. о. ассоциативно, но, вообще говоря, не коммутативно.

Б. о. R в A называется: а) рефлексивным, если ; б) транзитивным, если ; в) симметричным, если ; г) антисимметричным, если . Если Б. о. R обладает нек-рым из свойств а), б), в), г), то обратное отношение обладает этим же свойством. Б. р. наз. функциональным, если

Наиболее важными типами Б. о. являются эквивалентности, порядки (линейные и частичные) и функциональные отношения. д. м. Смирнов.


Математическая энциклопедия. — М.: Советская энциклопедия. . 1977—1985.