- КАЛИБРОВОЧНАЯ СИММЕТРИЯ
-
общее назв. класса внутр. симметрии ур-ний теории поля (т. е. симметрии, связанных со св-вами элем. ч-ц, а не со св-вами пространства-времени), характеризуемых параметрами, зависящими от точки пространства-времени (r, t).В физике принято различать четыре типа фундам. вз-ствий: сильное, эл.-магн., слабое и гравитационное. Соотв. существуют четыре класса элем. ч-ц: адроны, к-рые участвуют во всех типах вз-ствий (они делятся на барионы и мезоны); лептоны, не участвующие только в сильном вз-ствии (из них нейтрино не участвуют и в эл.-магн. вз-ствии); фотон, участвующий только в эл.-магн. вз-ствии; гипотетич. гравитон — переносчик гравитац. вз-ствия. Каждая группа ч-ц характеризуется своими специфич. законами сохранения. Так, с большой точностью установлено сохранение барионного и электрич. зарядов, электронного и мюонного лептонных зарядов (по отдельности). Кроме того, в сильном вз-ствии имеются приближённые законы сохранения — изотопич. спина, странности, «очарования» и т. д., к-рые нарушаются эл.-магн. и (или) слабым вз-ствиями. Каждый из законов сохранения явл. проявлением определённой внутр. симметрии ур-ний поля (ур-ний движения). Если, напр., каким-то образом удалось бы «выключить» эл.-магн. и слабое вз-ствия, то оказалось бы, что протон и нейтрон неотличимы. А т. к. протон и нейтрон — квант. объекты, описываемые волн. ф-циями yp (r, t) и yn(r, t), то невозможно различить не только эти ч-цы, но и любую их суперпозицию, к-рую можно изобразить как поворот на нек-рый угол в т. н. изотопич. пр-ве (подобно тому как единичный вектор в плоскости можно задавать как его проекциями на оси х и у («р» и «n»), так и углом поворота j по отношению к оси х). Это и есть внутр. симметрия ур-ний, к-рая соответствует сохранению изотопич. спина (см. ИЗОТОПИЧЕСКАЯ ИНВАРИАНТНОСТЬ). Допустим, что в нек-рой лаборатории протоном называют ч-цу, состояние к-рой описывается одной суперпозицией волн, ф-ций yp и yn, а в др. лаборатории — иной, т. е., что угол поворота j в изотопич. пр-ве зависит от координат в пространстве-времени: j=j(r, t). Такой поворот на угол j(r, t) наз. калибровочным (или градиентным) преобразованием. Если законы природы не зависят от такого локального произвола в выборе суперпозиций, то в ур-ниях движения с необходимостью появляется слагаемое, учитывающее вз-ствие ч-ц. Действительно, ур-ние движения свободного нуклона, описывающее изменение волн. ф-ции со временем (см. ДИРАКА УРАВНЕНИЕ), содержит производные по времени, а следовательно (из требования релятивистской инвариантности), и по координате от волн. ф-ции (от поля). Поэтому при повороте на j(r, t) ур-ния приобретут добавку, пропорц. производной j по t и r. Эта добавка при преобразованиях Лоренца изменяется как четырёхмерный вектор (4-вектор), и, чтобы её компенсировать, в ур-ния движения следует добавить какие-то новые векторные поля, к-рые при подобных поворотах также приобретали бы добавку, пропорц. производной от j, но с обратным знаком. Таким образом, К. с. приводит к необходимости существования векторных калибровочных полей, обмен квантами к-рых обусловливает вз-ствия ч-ц.Не обязательно, чтобы калибровочные преобразования «перепутывали» разные ч-цы (как протон и нейтрон). В квант. электродинамике ту же роль играют веществ. и мнимая части волн. ф-ции эл-на (yе), а роль изотопич. пр-ва — плоскость комплексного переменного, где по одной оси откладывается веществ. часть yе, а по другой — мнимая. Комплексную ф-цию yе можно представить в виде произведения модуля на фазовый множитель, тогда поворот в этом пр-ве на угол j сведётся к изменению фазового множителя, т. е. к умножению yе на новый фазовый множитель:где е в показателе экспоненты — заряд эл-на. При подстановке преобразованной ф-ции в ур-ние Дирака(х — четырёхмерная координата с компонентами х0- ct, х1=х, х2=у, х3=z, gm— т. н. матрицы Дирака), описывающего движение свободного эл-на, появляется добавкаieSmgm((дj(x)/дxm),т. е. ур-ние не имеет К. с. Чтобы обеспечить К. с. и компенсировать эту добавку, необходимо изменить ур-ние (2), приписав к его правой части ieSmgmAm(x)ye(x), где поле Аm(x) при калибровочных преобразованиях переходит в Аm(x)+дj(x)/дxm. Т. о., для выполнения требования калибровочной инвариантности эл-н должен взаимодействовать с нек-рым векторным полем Аm . Если же записать ур-ния для этого поля так, чтобы они сами были калибровочно-инвариантиыми, то получаются Максвелла уравнения. Следовательно, компенсирующим (калибровочным) полем для калибровочного преобразования волн. ф-ции эл-на оказывается эл.-магн. поле, а калибровочной ч-цей — фотон, безмассовая ч-ца со спином 1. Эти два св-ва — отсутствие массы и спин 1 присущи любым калибровочным полям.В квантовой хромодинамике, описывающей динамику кварков, вместо одного появляются три «цветных» фермиона, но все рассуждения остаются без изменения, за исключением того, что калибровочные преобразования, кроме изменения фазы, могут менять и «цвет» (т. к. при наличии полной симметрии «цвет» так же ненаблюдаем, как и фаза):где индексы a и b соответствуют трем возможным значениям «цвета» кварков. В результате вместо одной фазы появляются восемь изменяющих «цвет» фаз jab(х) (девятая соответствует общей фазе, Sajaa(x), и сохранению общего барионного заряда). Чтобы компенсировать изменение в ур-ниях движения в этом случае, приходится вводить восемь «цветных» т. н. глюонных полей (Янга — Миллса полей), квантами к-рых явл. «цветные» безмассовые глюоны. Обмен глюонами приводит к вз-ствию кварков. Поскольку в отличие от фотонов глюоны, как и кварки, оказываются «цветными» («заряженными»), они также должны взаимодействовать посредством испускания и поглощения глюонов, т. е. ур-ния для глюонного поля (в отличие от ур-ний Максвелла в вакууме) оказываются нелинейными. Калибровочные теории и калибровочные поля такого рода наз. н е а б е л е в ы м и.Идея калибровочной инвариантности оказалась наиб. плодотворной в единой теории слабого и эл.-магн. вз-ствий (см. СЛАБОЕ ВЗАИМОДЕЙСТВИЕ). В этой теории, наряду с фотоном, осуществляющим эл.-магн. вз-ствие, появляются новые векторные бозоны— ч-цы, переносящие слабое вз-ствие. Такие промежуточные векторные бозоны должны быть массивными вследствие того, что слабое вз-ствие проявляется лишь на очень малых расстояниях, 10-15 см. Однако кванты калибровочных полей должны быть безмассовыми, появление у них массы нарушает калибровочную инвариантность ур-ний движения. Выход из этого затруднения был предложен П. Хиггсом (США, 1964) и состоит в том, что в дополнение к спинорным полям, без нарушения К. с., вводятся связанные друг с другом калибровочными преобразованиями самодействующие скалярные поля (поля X и г г с а). Самодействие этих полей выбирается так, чтобы калибровочно-инвариантное решение стало неустойчивым, т. е. не соответствующим минимуму потенц. энергии. Минимальной же энергии при этом соответствует непрерывная серия решений, каждое из к-рых не инвариантно относительно калибровочных преобразований, но серия в целом калибровочно инвариантна: при калибровочных преобразованиях одно решение переходит в другое. Нарушение симметрии состоит в том, что в природе реализуется только одно из этих решений. Это явление наз. спонтанным нарушением симметрии, или эффектом Хиггса. Оно позволяет сделать бозоны тяжёлыми без нарушения К. с. в самих ур-ниях движения. При этом оказывается, что в число промежуточных векторных бозонов входят как электрически заряженные (W+ и W-), так и нейтральный (Z°). Масса Z° должна быть =90 ГэВ, a W± =80 ГэВ; масса фотона остаётся равной нулю.Интересной проблемой квант. теории поля явл. включение в единую калибровочную схему и сильного вз-ствия (т. н. «великое объединение»), Другим перспективным направлением объединения считается т. н. суперкалибровочная симметрия, или просто суперсимметрия. В отличие от обычных калибровочных преобразований, «перемешивающих» ч-цы с одним и тем же спином, суперкалибровочные преобразования «перемешивают» поля, кванты к-рых имеют разные спины, напр. бозоны со спином 1 и фермионы со спином 1/2, т. е. ч-цы, подчиняющиеся разным статистикам. Аналогично электродинамике такие преобразования также можно представить в виде «поворотов», но уже в нек-ром «суперкомплексном» пр-ве суперполей Ф=b+hf, где b, f — соотв. бозонное и фермионное поля, а h — нек-рая единица «фермионной части» этого пр-ва (аналог мнимой единицы i), удовлетворяющая условию hh=0. Подобные построения в принципе позволяют включить в единую схему не только сильное, но и гравитац. вз-ствие, однако известные попытки объединения всех полей на основе суперсимметрий пока не могут претендовать на описание реального мира (см. СУПЕРСИММЕТРИЯ).
Физический энциклопедический словарь. — М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1983.
.