- КОСМОЛОГИЯ
-
(от греч. kosmos — мир, Вселенная и logos — слово, учение), учение о Вселенной как едином целом и о всей охваченной астр. наблюдениями области Вселенной (Метагалактике) как части целого; раздел астрономии. Выводы К. основываются на законах физики и данных наблюдат. астрономии, а также философских принципах (в конечном счёте — на всей системе знаний) своей эпохи. Важнейшим философским постулатом К. явл. положение, согласно к-рому законы природы (законы физики), установленные на основе изучения весьма ограниченной части Вселенной, чаще всего на основе опытов на планете Земля, могут быть экстраполированы на значительно большие области, в конечном счёте — на всю Вселенную.Космологические теории различаются в зависимости от того, какие физ. принципы и законы кладутся в основу К. Построенные на их основе модели должны допускать проверку для наблюдаемой области Вселенной, выводы теории должны подтверждаться наблюдениями (во всяком случае, не противоречить им), теория должна предсказывать новые явления. В 80-х гг. 20 в. этому требованию наилучшим образом удовлетворяют разработанные на основе общей теории относительности (в релятив. К.) однородные изотропные модели нестационарной горячей Вселенной.Возникновение совр. К. связано с созданием релятив. теории тяготения (А. Эйнштейн, 1916) и зарождением внегалактич. астрономии (20-е гг.). На первом этапе развития релятив. К. главное внимание уделялось геометрии Вселенной (кривизна четырёхмерного пространства-времени и возможная замкнутость Вселенной). Начало второго этапа можно датировать работами сов. учёного А. А. Фридмана (1922— 1924), в к-рых он показал, что Вселенная, заполненная тяготеющим в-вом, не может быть стационарной — она должна расширяться или сжиматься; но эти принципиально новые результаты получили признание лишь после открытия красного смещения (эффекта «разбегания» галактик) амер. астрономом Э. Хабблом (1929). В результате на первый план выступили проблемы механики Вселенной и её «возраста» (длительности расширения). Третий этап начинается моделями «горячей» Вселенной (амер. физик Г. Гамов, 2-я пол. 40-х гг.), в к-рых осн. внимание переносится на физику Вселенной — состояние в-ва и физ. процессы, идущие на разных стадиях расширения Вселенной, включая наиб. ранние стадии, когда состояние было необычным. Наряду с законом тяготения в К. приобретают большое значение законы термодинамики, данные яд. физики и физики элем. ч-ц. Возникает релятив. астрофизика, к-рая заполняет былую брешь между К. и астрофизикой.В основе теории однородной изотропной Вселенной лежат: ур-ния Эйнштейна общей теории относительности, из них следует кривизна пространства-времени и связь кривизны с плотностью массы (энергии); представления об однородности и изотропности Вселенной (во Вселенной нет к.-л. выделенных точек и направлений, т. е. все точки и направления равноправны). Последнее утверждение часто называют космологич. постулатом. Если дополнительно предположить, что во Вселенной отсутствуют гипотетич. силы, возрастающие с расстоянием и противодействующие тяготению в-ва, а плотность массы создаётся гл. обр. в-вом, то космологич. ур-ния приобретают особенно простой вид и возможными оказываются только две модели. В одной из них кривизна трёхмерного пр-ва отрицательна или (в пределе) равна нулю, Вселенная бесконечна (открытая модель); в такой модели расстояния между скоплениями галактик со временем неограниченно возрастают. В др. модели кривизна пр-ва положительна, Вселенная конечна (но столь же безгранична, как и в открытой модели); в такой (замкнутой) модели расширение со временем сменяется сжатием. В ходе эволюции Вселенной кривизна трёхмерного пр-ва уменьшается при расширении, увеличивается при сжатии, но знак кривизны не меняется, т. е. открытая модель остаётся открытой, замкнутая — замкнутой. Нач. стадии эволюции по обеим моделям совершенно одинаковы: должно было существовать особое нач. состояние — сингулярность с огромной (не меньше чем с планковской 1093 г/см3) плотностью массы и кривизной пр-ва и взрывное, замедляющееся со временем расширение.Характер эволюции схематически показан на рис. 1 (замкнутая модель) и рис. 2 (открытая модель). По оси абсцисс отложено время, причём момент взрывного начала принят за начало отсчёта времени (t=0).По оси ординат отложен нек-рый масштабный фактор R, в качестве к-рого может быть принято, напр., расстояние между теми или иными двумя далёкими объектами (галактиками). Зависимость R=R(t) изображается на рис. сплошной линией; прерывистая линия — изменение кривизны в ходе эволюции (кривизна пропорц. 1/R2). Заметим ещё, что относит. скорость изменения расстояний 1/R•dR/dt=H есть не что иное, как Хаббла постоянная (точнее, параметр Хаббла). В нач. момент (t®0) фактор R®0, а параметр Хаббла H®?. В наше время значение Н лежит в пределах 50—100 (км/с)/Мпк, что соответствует времени расширения от 10 до 20 млрд. лет. Из космологич. ур-ний следует, что при заданном Н равная нулю кривизна трёхмеряого пр-ва может иметь место только при строго определённой (критической) плотности массы rкp= Зс2H2/G, где G — гравитационная постоянная. Если r>rкр, то мир замкнут, при r=состояния представляет собой третье независимое положение релятив. К. С 60—70-х гг. стала общепринятой модель «горячей» Вселенной (предполагается высокая начальная температура). В условиях очень высокой темперы (T>1013 К) вблизи сингулярности не могли существовать не только молекулы или атомы, но даже и ат. ядра; существовала лишь равновесная смесь разных элем. ч-ц (включая фотоны и нейтрино). На основе физики элем. ч-ц можно рассчитать состав такой смеси при разных темп-pax Т, соответствующих последоват. этапам эволюции. Ур-ния К. позволяют найти закон расширения однородной и изотропной Вселенной и изменение её физических параметров в процессе расширения. Согласно этому закону, плотность числа ч-ц вещества уменьшается лропорц. R-3 (или t-2), плотность излучения =R-4 и т. д. Поскольку расширение вначале к тому же идёт с большой скоростью, очевидно, что высокие плотность и темп-ра могли существовать только очень короткое время. Действительно, уже при t»0,01 с плотность упадёт от бесконечного (формально) значения до =1010 г/см3. Во Вселенной в момент t=0,01 с должны были сосуществовать фотоны, эл-ны, позитроны, нейтрино и антинейтрино, а также небольшая примесь нуклонов (протонов и нейтронов). В результате последующих превращений к моменту t»3 мин из нуклонов образуется смесь лёгких ядер (2/3 водорода и 1/3 гелия по массе; все остальные хим. элементы синтезируются из этого дозвёздного в-ва, причём намного позднее, в результате яд. реакций в недрах звёзд; (см. НУКЛЕОСИНТЕЗ)). В момент образования нейтральных атомов гелия и водорода (рекомбинация нуклонов и электронов в атомы произошла при t=106 лет) вещество становится прозрачным для оставшихся фотонов, и они должны наблюдаться в настоящее время в виде реликтового излучения, свойства к-рого можно предсказать на основе теории «горячей» Вселенной. Хотя расширение вначале идёт очень быстро, процессы превращений элем. ч-ц в самом начале расширения протекают несравненно быстрее, в результате чего устанавливается последовательность состояний термодинамич. равновесия. Это чрезвычайно важное обстоятельство, поскольку такое состояние полностью описывается макроскопич. параметрами (определяемыми скоростью расширения) и совершенно не зависит от предшествующей истории. Поэтому незнание того, что происходило при плотностях, намного превосходящих ядерную, не мешает делать б. или м. достоверные суждения о более поздних состояниях, описываемых законами совр. физики микромира. Общие законы физики надёжно проверены при яд. плотностях (=1014 г/см3), эту плотность имеет Вселенная спустя 10-4 с от начала расширения. Следовательно, физ. св-ва эволюционирующей Вселенной вполне поддаются изучению со времени 10-4 с от состояния сингулярности (в ряде случаев эту границу отодвигают непосредственно к сингулярности). Выводы релятив. К. имеют радикальный, революц. характер, и вопрос о степени их достоверности представляет большой общенауч. и мировоззренческий интерес. Наибольшее принципиальное значение имеют выводы о нестационарности (расширении) Вселенной, о высоких значениях плотности и темп-ры в начале расширения («горячая» Вселенная) и об искривлённости пространства-времени. Несколько более частный характер имеют проблемы знака кривизны трёхмерного пр-ва окружающего мира, а также степени однородности и изотропии Вселенной. Вывод о нестационарности надёжно подтверждён космологич. красным смещением; наблюдаемая область Вселенной с линейными размерами порядка неск. млрд. парсек расширяется, и это расширение длится по меньшей мере неск. млрд. лет (объекты, находящиеся на расстоянии 1 млрд. пк, мы видим такими, какими они были ок. 3 млрд. лет тому назад). Столь же основат. подтверждение нашла и концепция «горячей» Вселенной: в 1965 было открыто реликтовое излучение, к-рое оказалось в высокой мере, с точностью до долей процента, изотропным, а спектр его равновесным (планковским) с T»3K. Это доказывает, что Вселенная на протяжении более чем 0,99 времени своего существования изотропна. Это, естественно, повышает доверие к однородным изотропным моделям, к-рые до этого рассматривались как весьма грубое приближение к действительности. Кривизна трёхмерного пр-ва пока не измерена. Её можно было бы определить, если бы была известна ср. плотность массы во Вселенной или можно было бы определить более точно зависимость красного смещения от расстояния (отклонение от линейной зависимости). Астрономич. наблюдения приводят к значениям усреднённой плотности в-ва, входящего в видимые галактики, ок. 3•10-31 г/см3. Определить плотность скрытого (невидимого) в-ва, а тем более плотность, создаваемую нейтрино (если масса нейтрино не равна нулю), гораздо труднее, и неопределённость суммарной плотности из-за этого весьма велика (она может быть, в частности, на два порядка больше усреднённой плотности звёздного в-ва). На основе имеющихся наблюдат. данных (103-3110-29) нельзя сделать никакого выбора между открытой (расширяющейся безгранично) и замкнутой (расширение в далёком будущем сменится сжатием) моделями. Эта неопределённость никак не сказывается на общем характере прошлого и совр. расширения, но влияет на возраст Вселенной (длительность расширения) — величину не достаточно определённую по данным наблюдений. Если бы расширение происходило с пост. скоростью, то время, истекшее с момента изначального взрыва до наст. времени, составляло бы (при H0=75 (км/с)/Мпк) T0=1/H0=13 млрд. лет. Но расширение, как видно из приведённых выше графиков, идёт с замедлением, поэтому время Т, истекшее с момента начала расширения, меньше Т0. Так, при r=rкр имеем: Т= 2/3T0=8,7 млрд. лет. Для r>rкр, т. е. для замкнутых моделей, Т ещё меньше. С др. стороны, если существуют космологнч. силы, соответствующие отталкиванию, то оказывается возможной, напр., длительная (порядка 10 или более млрд. лет) задержка расширения в прошлом, и Т может составлять десятки млрд. лет. Релятив. К. объясняет наблюдаемое совр. состояние Вселенной, она предсказала неизвестные ранее явления. Но развитие К. поставило и ряд новых, крайне трудных проблем, к-рые ещё не решены. Так, для изучения состояния в-ва с плотностями на много порядков выше яд. плотности нужна совершенно новая физ. теория (предположительно, некий синтез существующей теории тяготения и квант. теории). Подходы же к изучению сингулярности пока лишь намечаются.По мере развития К. возник вопрос о единственности Вселенной. В рамках совр. К. довольно естественно считать Метагалактику единственной. Но вопросы топологии пространства-времени разработаны ещё недостаточно для того, чтобы составить представление о возможностях, к-рые могут быть реализованы в природе. Это надо иметь в виду, в частности, и в связи с проблемой возраста Вселенной.Существует проблема зарядовой асимметрии во Вселенной; в нашем космич. окружении (во всяком случае, в пределах Солн. системы и Галактики, а вероятно, и в пределах всей Вселенной) имеет место подавляющее количеств. преобладание в-ва над антивеществом. Причины, приведшие к наблюдаемой асимметрии между веществом и антивеществом своими корнями уходят, по-видимому, в самые ранние стадии развития Вселенной.К успешно решаемым проблемам К. относится образование скоплений галактик и отд. галактик. Они возникли после стадии рекомбинации благодаря росту имевшихся небольших неоднородностей в распределении в-ва и влиянию гравитац. неустойчивости. Ряд др. проблем К. (проблема сингулярности, выбора космологич. моделей и др.) пока ещё не решены.
Физический энциклопедический словарь. — М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1983.
- КОСМОЛОГИЯ
-
Космология (от греч. kosmos - мир, Вселенная и logos - слово, учение) - раздел астрономии, изучающий Вселенную как целое и включающий в себя учение о строении и эволюции всей охваченной астр. наблюдениями части Вселенной. Эмпирич. основой космологич. теорий являются данные астр. наблюдений и данные эксперим. физики. Теоретич. базис К. составляют основные физ. теории, описывающие законы движения материи. К. использует также достижения математики и др. наук. Космологич. выводы и обобщения имеют большое мировоззренческое значение.
1. Введение
Представления о строении всего окружающего мира были важным элементом человеческой культуры на протяжении всей её истории. Эти представления отражали уровень знаний и опыт изучения природы в соответствующие эпохи развития человеческого общества. По мере того как расширялись пространственные (и временные) масштабы познанной человеком части Вселенной, менялись и космологич. представления. Первой космологич. моделью, имеющей матем. обоснование, можно считать геоцентрич. систему мира К. Птолемея (К. Ptolemaios, 2 в. н. э.). Она господствовала в науке ок. 1,5 тыс. лет. Затем её сменила гелиоцентрич. система мира Н. Коперника (М. Kopernik, 16 в. н. э.). В дальнейшем необычайное расширение масштабов исследованного мира благодаря изобретению и совершенствованию телескопов привело к представлению о звёздной Вселенной. Наконец, в нач. 20 в. возникло представление о Вселенной как о мире галактик (Метагалактике). Из рассмотрения этой историч. цепочки смен космологич. представлений с непреложностью следует, что каждая "система мира" по существу была моделью наибольшей системы небесных тел, достаточно хорошо изученной к тому времени. Так, модель Птолемея правильно отражала строение системы Земля - Луна, система Н. Коперника была моделью Солнечной системы, идеи модели звёздного мира У. Гершеля (W. Herschel) и др. отражали нек-рые черты строения Галактики. Но каждая из этих моделей претендовала в своё время на описание строения "всей Вселенной". Эта же тенденция на новом уровне прослеживается и в развитии К. в 20 в.
Ещё в 19 в. выяснилось, что попытки применения теории тяготения Ньютона и классич. физики к бесконечному распределению материи в пространстве ведёт к ряду серьёзных трудностей (см. Гравитационный парадокс, Фотометрический парадокс, "Тепловая смерть " Вселенной). Совр. К. возникла в нач. 20 в. после создания А. Эйнштейном (A. Einstein) релятивистской теории тяготения (общей теории относительности - ОТО). Первая модель Вселенной, основанная на новой теории тяготения, т. н. релятивистская космологич. модель, была построена А. Эйнштейном в 1917. Однако она описывала статич. Вселенную и, как показали астрофизич. наблюдения, оказалась неверной.
В 1922-24 А. А. Фридманом были получены общие решения ур-ний ОТО для вещества, в среднем равномерно заполняющего всё пространство, в к-ром к тому же все направления равноправны. Эти решения в общем случае нестационарны, они описывают расширение или сжатие всего вещества, всей Вселенной. В 1929 Э. Хаббл (Е. Hubble) в итоге многолетних астрофизич. наблюдений открыл расширение окружающего нас мира галактик, открыл расширение Вселенной, подтверждающее правильность выводов А. А. Фридмана. Фридмановские модели являются основой всего последующего развития К. Эти модели описывали механич. картину движения тяготеющих масс во Вселенной и её глобальную структуру. Если прежние космологич. построения призваны были описывать гл. обр. наблюдаемую структуру Вселенной, кажущуюся стационарной, то модели Фридмана по своей сути были эволюционными, связывали сегодняшнее состояние Вселенной с её предыдущей историей. С кон. 40-х гг. 20 в. всё большее внимание К. обращает на физику процессов, протекавших на разных этапах космологич. расширения. В 1946-48 появилась теория горячей Вселенной Г. Гамова (G. Gamow), согласно к-рой в начале расширения вещество характеризовалось огромной темп-рой. В это же время были разработаны принципиально новые астр. методы наблюдений. Возникла радиоастрономия, а затем, после начала космич. эры, развились рентгеновская астрономия, гамма-астрономия, ИК-астрономия. Новые возможности появились и у оптической астрономии.
В 1965 А. Пензиас (A. Penzias) и Р. Вильсон (R. Wilson) открыли микроволновое фоновое излучение (реликтовое излучение) - проэволюционировавшее (охладившееся) эл.-магн. излучение, к-рое имело в начале расширения Вселенной очень высокую темп-ру. Это открытие доказало справедливость теории Гамова.
Совр. этап в развитии К. характеризуется интенсивным исследованием проблемы начала космологич. расширения, когда плотности материи и энергии частиц были огромными. Руководящими идеями здесь являются новые теоретич. открытия в физике взаимодействия элементарных частиц при очень больших энергиях (см. Великое объединение). Др. важная проблема К.- объяснение возникновения крупномасштабной структуры Вселенной - скоплений галактик, самих галактик и т. д. из первоначально почти однородного расширяющегося вещества.
Следует подчеркнуть определяющую роль астрофизич. наблюдений в развитии совр. К. Её выводы и заключения проверяются прямыми или косвенными наблюдениями, и в этом смысле К. имеет такой же астрофизич. статус, как, напр., теория строения и эволюции звёзд.
2. Теория однородной изотропной Вселенной
Астрофизич. наблюдения показывают, что в масштабах, превышающих сотни Мпк (самые крупные скопления галактик имеют размеры 10-20 Мпк), распределение материи можно считать однородным, а все направления во Вселенной равноправными. В фридма-новских космологич. моделях, основывающихся на этих фактах, материя рассматривается как непрерывная среда, равномерно заполняющая пространство и в каждый момент времени имеющая определ. значения плотности и давления Р. Для анализа движения этой среды обычно используют сопутствующую систему отсчёта, аналогичную лагранжевым координатам в классич. гидродинамике. В этой системе вещество неподвижно, деформацию вещества отражает деформация системы отсчёта, так что задача сводится к описанию деформации системы отсчёта.
Трёхмерное пространство сопутствующей системы отсчёта наз. сопутствующим пространством. В случае однородного изотропного пространства квадрат элемента длины dl может быть записан в виде
а квадрат четырёхмерного интервала ds - в виде
Здесь t - время, х, у, z - безразмерные пространственные координаты, R - радиус кривизны пространства (он не зависит от пространственных координат), с - скорость света, коэф. k может принимать значения О, 1. При k=0 пространство евклидово, при k= +1 пространство имеет положительную кривизну, при k=-1 - отрицательную. [В случае k=0, R - произвольный масштабный множитель (масштабный фактор).]Изменение R с течением времени описывает расширение или сжатие сопутствующей системы отсчёта, а значит, и вещества.
Для решения задачи о деформации системы отсчёта остаётся найти единств. неизвестную ф-цию R (t). Ур-ния ОТО в рассматриваемом случае сводятся к след. двум ур-ниям для R (t):
Здесь точка над R обозначает дифференцирование по t,L- космологическая постоянная, описывающая гравитацию вакуума. Величина R/R определяет скорость относит. изменения линейных масштабов в системе отсчёта, она обозначается R/RH и наз. постоянной Хаббла (поскольку Н зависит от времени, её правильнее называть параметром Хаббла). Ур-ния (3), (4) определяют зависимость R от t и из них следует выражение
Ур-ние (3) описывает замедление темпа расширения Вселенной под действием тяготения. При этом учитывается, что в ОТО тяготение создаётся также и давлением вещества. Поскольку в однородной Вселенной нет градиентов давления, в ней нет и гидродина-мич. сил, определяемых перепадом давления и могущих влиять на движение вещества. Давление проявляется только в гравитации. Для решения ур-ний (3), (4) надо знать зависимость между р и Р (уравнение состояния вещества). На разных этапах эволюции Вселенной эта зависимость различна.
В совр. Вселенной космологич. постоянная Л равна, по-видимому, нулю или очень мала, и ею в ур-ниях (3) и (4) можно пренебречь. Для случая L=0 и обычных для вещества ур-ний состояния Р=Р( )ф-ция R (t )имеет вид, показанный на рисунке. График R (t )всегда начинается с нуля (по определению R (t)0). Если k0, то при ф-ция R (t )неограниченно возрастает. Если же k>0, то возрастание R(t )в определ. момент сменяется уменьшением и, в конце концов, R (t )вновь обращается в нуль. Знак k определяется знаком разности [см. ур-ние (4) при L = 0]. Величина наз. критической плотностью Вселенной. Если , то k<0 и R (t )неограниченно нарастает, что означает неогранич. расширение системы отсчёта и вещества. В этом случае силы тяготения слишком слабы, чтобы затормозить и остановить расширение Вселенной. При этом плотность р меняется от при t=0 до при Если , то k>0, силы тяготения достаточно велики и расширение Вселенной через нек-рое время должно смениться сжатием. Плотность сначала падает от бесконечно большого (при t=0) до нек-рого мин. значения; затем снова возрастает до бесконечности. Состояния с , R=0 получили назв. сингулярностей. Случай k=0является промежуточным, при этом значении k расширение происходит неограниченно (рис.). Знак разности неизменен в ходе эволюции модели, хотя меняются со временем. (О моделях с L0 см. в ст. Космологические модели. )Пространства космологич. моделей в зависимости от значения k имеют разл. геом. свойства.
Зависимость R = R (t) для однородной изотропной Вселенной с L=0. При расширение Вселенной сменяется сжатием, при Вселенная неограниченно расширяется; t0 - современная Вселенная.
При k=0 пространство евклидово, его объём бесконечен в любой момент времени. При k<0 пространство обладает постоянной отрицат. кривизной, геометрия его неевклидова и оно также имеет бесконечный объём. Модели, в к-рых пространства бесконечны, наз. открытыми. Если же k>0, то в такой модели пространство имеет постоянную положит. кривизну, оно не ограничено, но имеет конечный объём V= . Такие модели наз. закрытыми или замкнутыми.
Здесь рассмотрены только пространства с простейшими топологич. свойствами. В принципе топология может быть более сложной, она не определяется полностью ур-ниями ОТО и должна задаваться дополнительно.
Ур-ния для R (t) - дифференц. ур-ния второго порядка, поэтому, чтобы найти ф-цию R (t )и определить т. о. космологич. модель, необходимо при нек-ром t знать (задать) значения двух констант (в случае L=0). Напр., для сегодняшнего момента t=t0 задать значение плотности и постоянней Хаббда H(t0)H0. Обычно вместо используют безразмерную величину . Для определения модели, соответствующей реальной Вселенной, эти величины (параметры модели) надо найти из наблюдений.
3. Наблюдательная космология
Определение значений Н0. и является одной из осн. задач наблюдательной К. начиная с её зарождения в кон. 20-х гг. 20 в. В однородной нестационарной (расширяющейся) Вселенной все объекты, слабо связанные силами тяготения (галактики и особенно скопления галактик), должны удаляться друг от друга со скоростью, пропорциональной расстоянию между ними. В 1929 Э. Хаббл установил, что далёкие галактики удаляются от нашей Галактики со скоростями , пропорциональными расстоянию l:
Сложность определения H0 из астр. наблюдений связана гл. обр. с трудностями измерения больших расстояний. Скорость удаления галактик измерить гораздо легче по Доплера эффекту - смещению линий в их спектрах в красную сторону (см. Красное смещение). Относит. изменение длины волны линий в спектре обозначают z:
Здесь - лаб. длина волны линии спектра, - длина волны смещённой линии. Наибольшее измеренное значение z у квазаров составляет 4,75 (на 1989). При небольших значениях z (z0,5) для определения космологич. расстояний l пользуются простой ф-лой l= =cz/H0 (Мпк) (см. Хаббла закон). Значение Н0. известно с неопределённостью в два раза: Н0=(50-100) км/(с-Мпк). Соответствующее значение критич. плотности = (5-20) *10-30 г/см 3. Величина 1/Н0. соответствует времени t0 (с точностью до порядка величины), прошедшему с момента сингулярности. Эта величина, наз. возрастом Вселенной, составляет (10-20) 109 лет. Сигнал, идущий со скоростью света с и вышедший в момент сингулярности, успевает за время t пройти конечное расстояние ct (в моделях Фридмана с обычным ур-нием состояния вещества и L=0). Сфера с радиусом ct и центром в точке наблюдения наз. горизонтом частицы. Она ограничивает область, доступную в принципе наблюдению в момент t.
Ещё большие трудности имеются в определении плотности . Достаточно хорошо известна усреднённая по всему пространству плотность вещества, входящего в галактики: 3*10-31 г/см 3, (1,5-6)*10-2. Газ, пыль и др. вещество между галактиками вносит малый вклад в ср. плотность вещества. Галактики собраны в группы и скопления разных масштабов, образуя ячеисто-сетчатую крупномасштабную структуру с характерным размером практически пустых областей порядка 30-35 Мпк. Характерное расстояние (корреляц. масштаб) между скоплениями галактик составляет 25-50 Мпк, а между крупнейшими сверхскоплениями 100-300 Мпк.
Астрофизич. наблюдения определённо показывают, что помимо светящегося вещества во Вселенной имеется большое кол-во трудно наблюдаемой несветящейся материи. Её наз. скрытой массой. Проявляется она только своим тяготением. Скрытая масса, сосредоточенная в скоплениях галактик, оказывается часто в десятки раз больше массы светящегося вещества звёзд этих скоплений. Оценки усреднённой плотности скрытой массы дают значение 0,2-0,7. Возможно, есть скрытая масса и между скоплениями галактик. Тогда не исключено, что полная плотность скрытой массы Вселенной близка к единице. Т. о., пока нельзя сказать с уверенностью, является ли наша Вселенная открытой (<1) или замкнутой (>1). Физ. природа скрытой массы неясна. Частично эта масса может быть обусловлена слабосветящимися звёздами или др. трудно наблюдаемыми небесными телами. Однако вероятнее, что скрытая масса является совокупностью большого числа элементарных частиц, обладающих массой покоя и слабо взаимодействующих с обычным веществом.
Наблюдательная К., помимо определения H0, и характера распределения материи в пространстве, призвана решать и мн. др. задачи, в первую очередь выявление таких свойств сегодняшней Вселенной, к-рые непосредственно отражают физику процессов, происходивших в начале космологич. расширения.
Важнейшее значение имеет открытие и исследование реликтового излучения (РИ), оставшегося от первонач. этапа расширения Вселенной. РИ имеет одинаковую интенсивность от всех участков неба и равновесный планковский спектр (в исследованном интервале длин волн 0,1-21 см), соответствующий темп-ре Т3 К. Интенсивность РИ в разных направлениях практически одинакова (флуктуации темп-ры РИ Т/Т для участков небесной сферы с размерами от неск. угл. минут до десятков градусов не превышают 10-4). Отсутствие заметных флуктуации интенсивности РИ в больших угл. масштабах свидетельствует о высокой степени однородности Вселенной во всём доступном наблюдению объёме. Обнаружена слабая дипольная анизотропия РИ, вызванная доплеровским эффектом из-за движения Солнечной системы по отношению к РИ со скоростью ок. 400 км/с в направлении созвездия Льва.
Др. важной для К. наблюдательной информацией является космич. распространённость хим. элементов. Наиб. распространён во Вселенной водород 1H , на долю к-рого приходится примерно 75% общей массы вещества, доля гелия 4 Не составляет 25%, примесь др. элементов незначительна.
Хим. элементы тяжелее гелия образуются, по совр. представлениям, на разных этапах эволюции звёзд. Гелий также образуется в звёздах, однако установлено, что столь большое кол-во гелия заведомо не могло быть произведено в звёздах за всё время существования Галактики. Т. о., водород и гелий должны иметь космологич. происхождение (см. Нуклеосинтез). Они являются результатом ядерных реакций, происходивших в начале расширения Вселенной. Важное значение для К. имеет распространённость дейтерия 2 Н, несмотря на малую долю в веществе Вселенной (3*10-5 по массе). Дело в том, что дейтерий не может в заметных кол-вах синтезироваться в звёздах (он быстро выгорает) и, следовательно, имеет космологич. происхождение.
4. Физика процессов в расширяющейся Вселенной
Наличие РИ прямо свидетельствует о том, что в далёком прошлом, в начале расширения Вселенной, темп-pa была весьма велика. Действительно, в ходе адиабатич. расширения темп-pa РИ уменьшается по закону ТR-1. Поэтому при . Физику процессов в этих условиях описывает горячей Вселенной теория. Согласно этой теории, при Т 1013 К в термодинамич. равновесии с фотонами находились барионы, мезоны, мюоны, электроны, нейтрино и античастицы всех этих частиц. С понижением темп-ры в ходе расширения Вселенной аннигилировали тяжёлые частицы и античастицы, передавая свою энергию более лёгким частицам (см. Аннигиляция). По прошествии неск. десятков секунд во Вселенной остались фотоны, примерно такое же кол-во нейтрино всех сортов и, возможно, какие-то другие слабо взаимодействующие с веществом частицы, существование к-рых предполагает теория. Помимо этого во Вселенной имелась небольшая примесь барионов (протонов и нейтронов), для к-рых, как предполагают, не нашлось партнёров-античастиц, чтобы проаннигилировать. Это объясняется тем, что в очень горячей Вселенной имелся небольшой избыток барионов над антибарионами. Число барионов в единице объёма составляет 10-9 от числа фотонов. Присутствуют также электроны в кол-ве, равном числу протонов (они обеспечивают электронейтральность вещества). Для нейтрино Вселенная в это время уже прозрачна. Имевшиеся на этот момент нейтрино остаются во Вселенной навечно. Эти, т. н. реликтовые, нейтрино, подобно реликтовым фотонам, из-за космологич. расширения постепенно теряют энергию ("нейтринное море" охлаждается).
Важные физ. процессы происходят при расширении Вселенной с барионами. При временах t=1 с с момента сингулярности протоны и нейтроны быстро превращаются друг в друга из-за взаимодействия с электронами, позитронами, электронными нейтрино и антинейтрино. При t порядка неск. секунд эти реакции прекращаются из-за понижения темп-ры. В это время доля нейтронов составляет ок. 0,15 от всего вещества. Наконец, по прошествии неск. минут становится возможным образование сложных атомных ядер. Нейтроны, объединяясь с протонами, образуют гл. обр. ядра 4 Не. В результате гелий составляет ок. 25% по массе, ок. 75% по массе - протоны (Н), примесь др. хим. элементов в синтезированном веществе незначительна.
Позже из этого вещества формируются галактики, звёзды. Данные наблюдений подтверждают, что вещество, из к-рого образовались объекты первого поколения, действительно имеет хим. состав, предсказываемый теорией. Для сравнения с наблюдениями важное значение имеют данные о распространённости дейтерия, имеющего космологич. происхождение. Из теории следует, что синтез дейтерия крайне чувствителен к плотности барионов в тот период, когда во Вселенной происходят ядерные реакции, а следовательно, и к сегодняшнему значению плотности барионов во Вселенной. Наблюдаемое кол-во дейтерия согласуется с теорией только в том случае, если сегодняшняя ср. плотность барионов 0,03. Поэтому, если ср. плотность всех масс во Вселенной близка к критической (), то барионы не могут составлять осн. долю скрытой массы.
После прекращения ядерных реакций плазма Вселенной расширялась и остывала. В этой плазме имелись небольшие неоднородности плотности (стоячие звуковые волны). Эти небольшие сгустки плазмы не могли расти, т. к. было велико давление реликтовых фотонов на плазму (для РИ плазма непрозрачна). Это давление препятствовало силам гравитации уплотнять и наращивать первичные сгущения. Более того, в достаточно малых масштабах неоднородности плотности (звуковые волны) затухали из-за лучистой вязкости и теплопроводности. Спустя примерно 300 000 лет после начала расширения темп-pa плазмы снизилась до 4000 К, произошла рекомбинация электронов и атомных ядер, и плазма превратилась в нейтральный газ. Этот газ прозрачен для РИ, и оно стало свободно выходить из газовых сгустков. Силам тяготения, сжимающим сгустки, стало противостоять только относительно слабое давление нейтрального газа. Тяготение на этом этапе развития Вселенной стало превосходить силы газового давления и сжимать сгустки вещества, масса к-рых превосходила 105 (= =1,99*1033 г - масса Солнца). Сгущения таких и больших масштабов росли и образовали гравитационно связанные массивные плоские тела ("блины" массой 1013-1014 ), из к-рых сформировалась затем крупномасштабная структура Вселенной.
Для проверки теории возникновения крупномасштабной структуры (сверхскоплений и скоплений галактик) важны наблюдения степени изотропии РИ. До эпохи рекомбинации космич. плазмы флуктуации плотности плазмы сопровождались флуктуациями РИ (плазма была непрозрачна для РИ). После рекомбинации излучение стало свободно распространяться в пространстве, и поэтому РИ должно нести информацию о неоднородностях, бывших в момент рекомбинации. Т. о., наблюдения интенсивности РИ в разных направлениях позволяют оценить степень неоднородности плазмы в момент рекомбинации. Оказывается, что в масштабах масс, соответствующих скоплениям галактик, амплитуда относит. возмущений интенсивности РИ, а следовательно, и плотности вещества была заведомо меньше 10-3. Если вещество Вселенной состоит только из барионов и 0,03, то с момента рекомбинации и до наших дней возмущения плотности могли вырасти из-за гравитац. неустойчивости примерно в 10 раз. Из-за своей малой величины они не могли привести к формированию скоплений галактик. С др. стороны, если (т. е. скрытая масса состоит из барионов), то возмущения успевают вырасти к нашему времени примерно в тысячу раз. Этого достаточно для формирования "блинов" (протоскоплений галактик), но значение противоречит реальной распространённости дейтерия во Вселенной. Остаётся предположить, что скрытая масса состоит в основном из слабовзаимодействующих частиц и что флуктуации плотности их распределения сыграли существенную роль в формировании структуры Вселенной. Сгущения таких частиц своим тяготением могли содействовать образованию барионных сгущений (первоначально малых, на что указывает изотропия РИ).
Помимо гипотезы о возникновении крупномасштабной структуры из первоначально малых адиабатич. флуктуации плотности, в К. рассматриваются и др. гипотезы образования наблюдаемой структуры Вселенной (энтропийная, вихревая), однако ни одна из них не может пока считаться полностью удовлетворительной.
5. Проблема начала космологического расширения
Успехи физики элементарных частиц при больших энергиях позволили приступить к исследованию процессов, имевших место в самом начале расширения Вселенной. Согласно теории, при T>1013 К вещество состояло в основном из кварков. При Т1015 К вещество содержало большое кол-во промежуточных бозонов - частиц, осуществляющих единое электрослабое взаимодействие. При ещё больших темп-pax ( Т 1028 К) происходили процессы, к-рые, вероятно, обусловили само существование вещества в сегодняшней Вселенной. При T>1028 К во Вселенной имелось большое число очень массивных т. н. Х- и Y-бозонов, осуществляющих единое сильное и электрослабое взаимодействие (см. Великое объединение, Суперсимметрия). С участием этих частиц кварки могут превращаться в лептоны и обратно. В это время кол-во частиц и античастиц каждого сорта было, вероятно, совершенно одинаковым. Когда темп-pa расширяющейся Вселенной стала ниже 1028 К, Х- и Y-бозоны и их античастицы начали распадаться, причём их распад происходил по-разному. В результате распада образовалось несколько больше частиц, чем античастиц. Это привело в конце концов к тому, что во Вселенной при Т1013 К возник небольшой избыток (10-9) барионов над антибарионами. Этот избыток барионов и привёл к существованию небольшой примеси обычного вещества в море лёгких частиц (при Т<1012 К), и из этого вещества сформировались позднее все небесные тела.
При темп-ре T>1028 К Вселенная находилась, вероятно, в состоянии чрезвычайно быстрого расширения (инфляции; см. Раздувающаяся Вселенная). Этот процесс, возможно, был обусловлен особым состоянием имевшегося во Вселенной скалярного поля (или полей), для к-рого ур-ние состояния имеет вид
(8)
Такое состояние скалярного поля получило назв. "ложного вакуума" или "вакуумоподобного состояния ". Согласно ур-ниям тяготения, оно даёт эффект того же характера, что и положит. космологическая постоянная (L>0). Подстановка (8) в (5) показывает, что при этом не меняется со временем. Из ур-ния (3) следует, что вместо сил тяготения, обусловливающих <0, при отрицат. давлении Р имеются силы гравитац. отталкивания и R>0. В результате Вселенная расширяется по экспоненциальному закону R(t)exp(t/t*) (где t*10-34 с - постоянная) и за короткое время масштабный фактор возрастает в огромное число раз. В конце периода инфляции плотность энергии скалярного поля переходит в плотность массы обычной материи ультрарелятивистских частиц и античастиц, и далее расширение протекает с замедлением в согласии с обычной (иногда говорят "стандартной ") теорией Фридмана. Стадия инфляции, вероятно, объясняет такие фундам. свойства сегодняшней Вселенной, как однородность в больших масштабах, близость ср.. плотности материи к критич. значению =1 и др. При переходе плотности скалярного поля в плотность обычной материи должны возникнуть первичные малые неоднородности плотности, эволюция к-рых в конце концов приводит к образованию крупномасштабной структуры Вселенной.
Теория рассматривает и др. возможные причины инфляции (помимо особого состояния скалярного поля) в самом начале расширения Вселенной.
Границу применимости самых общих концепций совр. физики в К. представляет плотность 1093 г/см 3 (т. н. планковская плотность), при к-рой должны проявляться ещё не изученные квантовые свойства пространства-времени и тяготения. Существуют гипотезы о рождении Вселенной с планковской плотностью из вакуума.
Модель раздувающейся (инфляционной) Вселенной даёт возможность предположить, что пространственная однородность Вселенной, вызванная экспоненциальным расширением, сглаживающим все неоднородности, простира. ется на расстояния, намного превышающие размеры охваченной наблюдениями области Вселенной, но всё же на конечные масштабы. На границах этой области однородности, возможно, имеются экзо-тич. образования, предсказываемые теоретич. физикой,- доменные стенки, магнитные монополи и др., а за границей - др. области Вселенной (иногда их наз. "другими вселенными ") с иными свойствами, чем та область, к-рая доступна наблюдениям.
Лит.: Зельдович Я. Б., Новиков И. Д., Строение и эволюция Вселенной, М.. 1975; Вейнберг С., Гравитация и космология, пер. с англ., М., 1975; Пиблс ф. Д ж. Э., Структура Вселенной в больших масштабах, пер. с англ., М., 1983; Линде А. Д., Раздувающаяся Вселенная "УФН ", 1984, т. 144, с. 177. И. Д. Новиков.
Физическая энциклопедия. В 5-ти томах. — М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1988.
.